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Abstract. For an asymmetric beam-splitter a new kind of entangled state |η, θ〉 is introduced, we then derive
the integration measure with which such states can make up a complete and orthonormal representation in
two-mode Fock space. We then show how to use |η, θ〉 in finding new squeezing operator and new squeezed
state, whose generation can relies on the asymmetric beamsplitter.

PACS. 03.67.-a Quantum information – 42.50.Dv Nonclassical states of the electromagnetic field, including
entangled photon states; quantum state engineering and measurements

1 Introduction

Recently, quantum entanglement, which originated from
Einstein, Podolsky and Rosen (EPR) in a paper arguing
the incompleteness of quantum mechanics [1], is of in-
creasingly interest in studies of quantum information and
quantum communication. It lies at the core of some new
applications in the emerging field of quantum communica-
tion science [2–7]. The concept of entanglement has played
a key role in understanding some fundamental problems
in quantum mechanics and quantum optics. In an quan-
tum entangled state, a measurement performed on one
part of the system provides information on the remaining
part, this has now been known as a basic feature of quan-
tum mechanics, though it seems weird. Thus an entangled
composite system is non-separable. In EPR’s pioneer argu-
ment, the entanglement was revealed by explicitly writing
the wave function of a bipartite with their relative position
X1−X2 being x0 and their total momentum P1+P2 being
p0 = 0, i.e. ψ(x1, x2) = (1/2π)

∫ ∞
−∞ dpeip(x1−x2+x0). En-

lightened by EPR, in reference [8] the simultaneous eigen-
state |η〉 of commutative operators (X1 − X2, P1 + P2)
expressed by two-mode creation operators is found,

|η〉 = exp
[

−1
2
|η|2 + ηa†1 − η∗a†2 + a†2a

†
1

]

|00〉12 , (1)

where η = (η1 + iη2)/
√

2 is a complex number, |00〉 is
the two-mode vacuum state, (ai, a

†
i ), i = 1, 2, are two-

mode Bose annihilation and creation operators in Fock
a e-mail: yyli@mail.ustc.edu.cn

space, related to (Xi, Pi) by Xi = (ai + a†i )/
√

2, Pi =
(ai−a†i )/(

√
2i). The basic ingredient of the |η〉 state about

the coordinate-momentum entanglement can be demon-
strated through its disentangling process,

|η = (η1 + iη2)/
√

2〉 = e−iη1η2/2

∞∫

−∞
dx |x〉1⊗|x− η1〉2 eixη2 ,

(2)
where |x〉i is the coordinate eigenstate of Xi,

|x〉i = π−1/4 exp
[

−1
2
x2 +

√
2xa†i −

1
2
a†2i

]

|0〉i . (3)

Equation (2) shows that once particle 1 is measured in the
state |x〉1, particle 2 immediately collapses to the coordi-
nate eigenstate |x− η1〉2. Equation (2) is named Schmidt
decomposition according to reference [9]. On the other
hand, the Schmidt decomposition of |η〉 in the two-mode
momentum basis is

|η〉 = eiη1η2/2

∫ ∞

−∞
dp |p〉1 ⊗ |η2 − p〉2 e−iη1p, (4)

where |p〉i is the momentum eigenvector of Pi,

|p〉i = π−1/4 exp
[

−1
2
p2 + i

√
2pa†i +

1
2
a†2i

]

|0〉i , (5)

which tells us that once particle 1 is measured in the state
|p〉1, particle 2 immediately collapses to the momentum
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eigenstate |η2 − p〉2 no matter how far the distance be-
tween the two particles is. Thus (2) and (4) together im-
plies the quantum entanglement. Note that the |η〉 states
obey the eigenvector equations

(
a1 − a†2

)
|η〉 = η |η〉 ,

(
a2 − a†1

)
|η〉 = −η∗ |η〉 . (6)

It then follows

(X1 −X2) |η〉 = η1 |η〉 , (7)

(P1 + P2) |η〉 = η2 |η〉 . (8)

The experimental implementation of entangled state of
continuous variables does not use the position and mo-
mentum of particles but uses light beams that can be
characterized by parameters obeying the same commu-
tation relations as position operator Xi and momentum
operator Pi. The analogy is based on the fact that a
single mode of the quantized radiation field can be ex-
pressed in terms of annihilation operators ai and creation
operator a†i of a quantum harmonic oscillator with fre-
quency ω, i.e. the electric field operator can be described
as Ei ∼ Xi cosωt + Pi sinωt. It is now known that the
EPR light fields with bipartite entanglement can be built
from two-single-mode squeezed vacuum state combined at
a 50/50 beam splitter [10], i.e. two light fields maximally
squeezed in Xi and Pi (in opposite quadratures), respec-
tively entering the two input ports of a 50/50 beamsplitter
produce at the output of the beamsplitter a pair of entan-
gled light beams. It is also known that even one single-
mode squeezed state incident on a beam splitter yields a
bipartite entangled state, because the quantized vacuum
field also enters in another input port of the beam splitter
and contributes to the two output modes [11].

An interesting and practical question thus naturally
arises: if the beamsplitter is not a 50/50 one, but an asym-
metric one, then what is the output state when two light
fields maximally squeezed in Xi and Pi, respectively en-
tering its two input ports and get superimposed? For an
asymmetric beamsplitter without absorption within itself,
its complex amplitude reflectivity r and transmissivity t
for light incident from one side (or r′, t′ for light com-
ing from the other side) are not equal to each other. The
incident fields (a1 and a2), the reflected field a3 and the
transmitted field a4 may be related by a “scattering ma-
trix” [11] (

a3

a4

)

=
(
t′ r
r′ t

) (
a1

a2

)

, (9)

where t, r, t′, and r′ obey the reciprocity relations

|r′| = |r| , |t′| = |t| , |r|2 + |t|2 = 1,

r∗t′ + r′t∗ = 0, r∗t+ r′t′∗ = 0, (10)

or the role of a beam splitter operation on two input modes
is equivalent to the unitary operator B ≡ exp[θ(a†1a2 −
a†2a1)], θ �= 0, (we do not consider the phase difference be-
tween the reflected and transmitted fields), with the am-
plitude reflection and transmission coefficients t = cos θ,

r = sin θ. The role of B is Ba1B
−1 = a3, Ba2B

−1 = a4.
The details of relationship between two input modes and
two output modes for the beam splitter is discussed in [11].
In this work we want to derive the output state for the
asymmetric beamsplitter, which turns out to be a new en-
tangled state characteristic of θ. Then we study its main
properties and present its application. Our work is ar-
ranged as follows: in Sections 2 and 3 we construct the new
two-mode entangled state, denoted as |η, θ〉, which can be
generated by an asymmetric beamsplitter. In Section 4 we
discuss the orthonormal and completeness relation of |η, θ〉
and calculate the weight factor for the completeness. In
Sections 5 and 6 we show how to apply |η, θ〉 to deriving
new squeezing operator and generalized squeezed state,
whose generation can relies on the asymmetric beamsplit-
ter.

2 The new entangled state |η, θ〉
In the case when two light fields maximally squeezed in
Xi and Pi, respectively entering a beam-splitter’s two in-
put ports and get superimposed, we find that the output
state emerging from asymmetric beam-splitter is

|η, θ〉 = exp
{

−1
2
|η|2 + ηa†1 − η∗

(
a†2 sin 2θ + a†1 cos 2θ

)

+
1
2
η∗2 cos 2θ + a†1a

†
2 sin 2θ +

1
2

(
a†21 − a†22

)
cos 2θ

}

|00〉 .
(11)

Clearly, when θ = π/4, which corresponds to a 50/50
beam-splitter, |η, π/4〉 reduces to |η〉. However, it must
be clarified that |η, θ〉 is not a rotated state of |η〉, i.e.,

|η, θ〉 �= exp
[
θ
(
a†1a2 ± a†2a1

)]
|η〉 . (12)

Operating ai, i = 1, 2, on |η, θ〉 respectively gives

(a1−a†2 sin 2θ−a†1 cos 2θ)|η, θ〉 = (η−η∗ cos 2θ)|η, θ〉, (13)

and

(a2 − a†1 sin 2θ + a†2 cos 2θ)|η, θ〉 = −η∗ sin 2θ|η, θ〉. (14)

From equations (13, 14) we can deduce

(a1 sin 2θ − a2 cos 2θ − a†2)|η, θ〉 = η sin 2θ|η, θ〉, (15)

and

(a1 cos 2θ+a2 sin 2θ−a†1)|η, θ〉 = (η cos 2θ−η∗)|η, θ〉. (16)

Subtracting (16) from (13) yields

(X2 −X1 tan θ)|η, θ〉 = −η1 tan θ|η, θ〉, (17)

adding (14) and (15) leads to

(P1 + P2 tan θ)|η, θ〉 = η2|η, θ〉, (18)

so |η, θ〉 is the common eigenvector of (X2−X1 tan θ) and
(P1 + P2 tan θ). When θ = π/4, equations (17, 18) reduce
to equations (7, 8). Therefore, |η, θ〉 is a new entangled
state with a non-trivial expression (see Eq. (11)) and one
can Schmidt-decompose it too.
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3 The physical meaning of |η, θ〉
and its relation to an asymmetric
beamsplitter

We now explain why the state |η, θ〉 can describe the pro-
duction of new entangled light fields using two maximally
squeezed light fields in opposite directions (respectively
represented by |p = 0〉1 and |x = 0〉2) and a non-50/50
beamsplitter, Let the asymmetric beam splitter operator
be exp

[
2θ(a†2a1 − a†1a2)

]
≡ exp[−2iθJy], from

exp [−2iθJy] a
†
1 exp [2iθJy] = a†1 cos θ + a†2 sin θ,

exp [−2iθJy] a
†
2 exp [2iθJy] = a†2 cos θ − a†1 sin θ, (19)

and (3) and (5) we have

exp
[
2θ(a†2a1 − a†1a2)

]
|p = 0〉1 ⊗ |x = 0〉2

= π−1/2 exp [−2iθJy] exp
[
1
2
a†21 − 1

2
a†22

]

× exp [2iθJy] exp [−2iθJy] |00〉

= π−1/2 exp
[
1
2

(
a†1 cos θ + a†2 sin θ

)2

− 1
2

(
a†2 cos θ − a†1 sin θ

)2
]

exp
[
2θ

(
a†2a1 − a†1a2

)]
|00〉

= exp
[

a†1a
†
2 sin 2θ +

1
2

(
a†21 − a†22

)
cos 2θ

]

× |00〉 = |η = 0, θ〉 .

Then operating the displacement operator D1(η) ≡
exp[ηa†1 − η∗a1] on (20) leads to (11), i.e.

D1(η) exp
[

a†2a
†
1 sin 2θ +

1
2

(
a†21 − a†22

)
cos 2θ

]

|00〉 =

exp
{

− 1
2
|η|2 + ηa†1 − η∗

(
a†2 sin 2θ + a†1 cos 2θ

)

+
1
2
η∗2 cos 2θ + a†1a

†
2 sin 2θ +

1
2

(
a†21 − a†22

)
cos 2θ

}

|00〉

= |η, θ〉 . (20)

Experimentally, this displacement can be implemented
by reflecting the light field of |η = 0, θ〉 from a partially
reflecting mirror (say 99% reflection and 1% transmis-
sion) and adding through the mirror a field that has been
phase and amplitude modulated according to the value
η ≡ |η|eiΦ.

4 Deriving the integration measure
with which |η, θ〉 can make up
a complete set

We now examine the main properties of |η, θ〉. Firstly we
see whether the set of |η, θ〉 is complete. Although it is well
known that for any given (pure-state) covariance matrix
(CM) the set of Gaussian states with this CM and all pos-
sible displacements form an (over)complete set. We still
think that this general fact needs to be discussed further in
special cases. Because we need to know what is the integra-
tion measure with which |η, θ〉 can make up a complete set.
This is like the fact that for the over-completeness relation
of coherent state (CS) |z〉 one needs to demonstrated how
to perform the integration

∫
d2z/π over |z〉 〈z|, though

the CS is defined by displacement transformation and
the completeness relation of Fock state

∑

n=0
|n〉 〈n| = 1

is known. This is also like the fact that although ma-
trices multiplication rule is known, mathematicians and
mathematical physicists still want to study miscellaneous
matrices which possess special properties. Moreover, in
the quantum state engineering of quantum optics physi-
cists have kept trying to discover different kinds of quan-
tum states, the well-known completeness of Fock states∑

n=0
|n〉 〈n| = 1 never impede such kind of exploration,

though every physical meaningful state can be expanded
in terms of

∑

n=0
|n〉 〈n| = 1. Using the mathematical for-

mula

∫
d2z

π
exp

{
ζ |z|2 + ξz + ηz∗ + fz2 + gz∗2

}
=

1
√
ζ2 − 4fg

exp
[−ζξη + ξ2g + η2f

ζ2 − 4fg

]

, (21)

Re(ζ + f + g) < 0, Re
(
ζ2 − 4fg
ζ + f + g

)

< 0,

or Re(ζ − f − g) < 0, Re
(
ζ2 − 4fg
ζ − f − g

)

< 0,

where ζ, f , g are so selected as to insure the integration
convergent, and using the normal ordered form of the vac-
uum projector (: : denotes normal ordering),

|00〉 〈00| =: exp
{
−a†1a1 − a†2a2

}
:, (22)

as well as the technique of integration within an ordered
product (IWOP) of operators [12,13] we can prove that
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sin 2θ
∫
d2η

π
|η, θ〉 〈η, θ| = sin 2θ

∫
d2η

π
: exp

{

− |η|2 + η
(
a†1 − a2 sin 2θ − a1 cos 2θ

)

+ η∗
(
a1 − a†2 sin 2θ − a†1 cos 2θ

)
+

1
2

(
η2 + η∗2

)
cos 2θ

+
(
a†1a

†
2 + a1a2

)
sin 2θ +

1
2

(
a†21 − a†22 + a2

1 − a2
2

)
cos 2θ − a†1a1 − a†2a2

}

:

=: exp
{

1
sin2 2θ

[(
a†1 − a2 sin 2θ − a1 cos 2θ

)(
a1 − a†2 sin 2θ − a†1 cos 2θ

)

+
1
2

cos 2θ
(
a†1 − a2 sin 2θ − a1 cos 2θ

)2

+
1
2

cos 2θ
(
a1 − a†2 sin 2θ − a†1 cos 2θ

)2
]

+
(
a†1a

†
2 + a1a2

)
sin 2θ +

1
2

(
a†21 − a†22 + a2

1 − a2
2

)
cos 2θ − a†1a1 − a†2a2

}

:

=: e0 := 1. (23)

|η, θ〉 expressed by (11) make up a complete set, i.e.,

see see equation (23) above.

Here the factor sin 2θ is needed for the completeness
relation, which provides us with a hint that for different
special states their integration measures may be differ-
ent. From (15) and the Hermite conjugate of (14) we have

〈η′, θ|
(
a1 sin 2θ − a2 cos 2θ − a†2

)
|η, θ〉 =

η sin 2θ 〈η′, θ |η, θ〉 = η′ sin 2θ 〈η′, θ |η, θ〉 . (24)

It then follows
sin 2θ (η − η′) 〈η′, θ |η, θ〉 = 0. (25)

Similarly, from (16) and the Hermite conjugate of (13)
we derive

〈η′, θ|
(
a1 cos 2θ + a2 sin 2θ − a†1

)
|η, θ〉 =

(η cos 2θ − η∗) 〈η′, θ| η, θ〉 = (η′ cos 2θ − η′∗) 〈η′, θ| η, θ〉 ,
[cos 2θ (η − η′) + (η′∗ − η∗)] 〈η′, θ |η, θ〉 = 0. (26)

Combining the results of equations (25, 26) we obtain

tan 2θ (η′∗ − η∗) 〈η′, θ |η, θ〉 = 0. (27)

As a consequence of (25) and (28) and in reference to
(24) we conclude

〈η′, θ |η, θ〉 = 2πδ (η1 − η′1) δ (η2 − η′2) / sin 2θ,

η = (η1 + iη2)/
√

2. (28)

According to Dirac’s theory on representation in quantum
mechanics, the set of |η, θ〉 make up a new orthonormal
and complete representation in the two-mode Fock space,
which is an another entangled state representation. For a
review of various applications of the EPR entangled state
representation of continuum variables we refer to [14].

5 New squeezing operator derive in terms
of |η, θ〉 and the corresponding squeezed
state generated by asymmetric beamsplitter

As an application of the |η, θ〉 representation, now we
construct the following ket-bra operator in an integration
form

U = sin 2θ
∫
d2η

µπ
|η/µ, θ〉 〈η, θ| . (29)

where η → η/µ is a c-number dilation transformation. The
meaning of discussing (30) lies in generating new squeezed
state by an asymmetric beamsplitter. We shall point out
that U is a new 2-mode squeezing operator (for a review
of squeezed states we refer to [15]). Letting µ = eλ, and
using (23) as well as the IWOP technique to perform this
integration, we find the normal ordering of U is

see equation (30) below
where we have set S = cosh2 λ− cos2 2θ, and

M =
sin 2θ
S

(
coshλ sin 2θ sinhλ cos 2θ
− sinhλ cos 2θ coshλ sin 2θ

)

. (31)

U = sin 2θ
∫
d2η

µπ
: exp

{

− 1
2
|η|2

(

1 +
1
µ2

)

+ η
(
a†1/µ− a2 sin 2θ − a1 cos 2θ

)
+ η∗

(
a1 − a†2 sin 2θ/µ− a†1 cos 2θ/µ

)

+
1
2

(
1
µ2
η∗2 + η2

)

cos 2θ +
(
a†1a

†
2 + a1a2

)
sin 2θ +

1
2

(
a†21 − a†22 + a2

1 − a2
2

)
cos 2θ − a†1a1 − a†2a2

}

:

=
sin 2θ√
S

exp
{

1
2S

sinh2 λ cos 2θ(a†21 − a†22 ) +
1
2S
a†1a

†
2 sinh 2λ sin 2θ

}

: exp
{

(a†1, a
†
2) (M − 1)

(
a1

a2

)}

:

× exp
{

1
2S

sinh2 λ cos 2θ(a2
1 − a2

2) −
1

2S
a1a2 sinh 2λ sin 2θ

}

, (30)
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Especially, when θ = π/4,

Uθ=π/4 = sechλ exp
{
a†1a

†
2 tanhλ

}

× : exp
{
(a†1a1 + a†2a2) (sechλ− 1)

}
: exp {−a1a2 tanhλ}

=
∫
d2η

µπ
|η/µ〉 〈η| , (32)

where |η/µ〉 is given by (1), Uθ=π/4 is the usual two-mode
squeezing operator. Equation (33) indicates that the usual
two-mode squeezing operator has a neat representation in
the entangled state basis [16], this implies that two-mode
squeezed state has close relationship with the bipartite
entangled state. No wonder the idler mode and the signal
mode, which come out of a parametric down-conversion
interaction and compose a two-mode squeezed state, are
entangled in a frequency domain. The matrix M in (32)
can be diagonalized as

M =
sin 2θ
S

(
1/2 i/2
i/2 1/2

) (
α 0
0 α∗

) (
1 −i
−i 1

)

, (33)

where

α = coshλ sin 2θ + i sinhλ cos 2θ, |α| =
√
S,

α =
√
Seiϕ, ϕ = tan−1 (tanhλ cot 2θ), (34)

so

lnM = ln
sin 2θ
S

+
(

1/2 i/2
i/2 1/2

)(
ln
√
S + iϕ 0
0 ln

√
S − iϕ

)(
1 −i
−i 1

)

=

(
ln sin 2θ√

S
ϕ

−ϕ ln sin 2θ√
S

)

. (35)

Thus using the operator identity exp[a†iΛijaj ] =:
exp{a†i (Λ− 1)ij aj} :, where i, j = 1, 2, · · ·, n, the repeated
indices in a term means summation from 1 to 2, (see Ap-
pendix), we have

: exp
{

(a†1, a
†
2) (M − 1)

(
a1

a2

)}

:=

exp
{

(a†1, a
†
2) (lnM)

(
a1

a2

)}

= exp

{

(a†1, a
†
2)

(
ln sin 2θ√

S
ϕ

−ϕ ln sin 2θ√
S

)(
a1

a2

)}

. (36)

Using the operator identity

exp[a†iΛijaj ]al exp[−a†iΛijaj] =
(
e−Λ

)
lj
aj, (37)

we have

U

(
a1

a2

)

U−1 = M−1

[(
a1

a2

)

−K

(
a†1
a†2

)]

, (38)

where

M−1 =
(

coshλ − cot 2θ sinhλ
cot 2θ sinhλ coshλ

)

,

K =
sinhλ
S

(
sinhλ cos 2θ coshλ sin 2θ
coshλ sin 2θ − sinhλ cos 2θ

)

= K̃, (39)

and

M−1K =
(

0 sinhλ/ sin 2θ
sinhλ/ sin 2θ 0

)

, (40)

M−1M̃−1 =
(

1 + (sinhλ/ sin 2θ)2 0
0 1 + (sinhλ/ sin 2θ)2

)

.

(41)

One can check the unitarity of U via the following com-
mutative relations,
[
UaiU

−1, UajU
−1

]
=

(
M−1KM̃−1 −M−1

(
M−1K

)T
)

ij
= 0,

[
UaiU

−1, Ua†jU
−1

]
=

[
M−1M̃−1 − (

M−1K
) (
M−1K

)T
]

ij
= δij .

(42)

From (23) and (30) we know that U is a new squeezing
operator which squeezes |η, θ〉 in a natural way,

U |η, θ〉 =
1
µ
|η/µ, θ〉 . (43)

6 The property and the generation
of the squeezed state generated by U

Writing equation (39) explicitly, we have

Ua1U
−1 = a1 coshλ− a2 cot 2θ sinhλ− a†2 csc 2θ sinhλ,

Ua2U
−1 = a2 coshλ+ a1 cot 2θ sinhλ− a†1 csc 2θ sinhλ.

(44)

It then follows

UX1U
−1 =

1√
2
U

(
a1 + a†1

)
U−1

= X1 coshλ−X2 cot θ sinhλ, (45)

UX2U
−1 = X2 coshλ−X1 tan θ sinhλ, (46)

UP1U
−1 =

1√
2i
U

(
a1 − a†1

)
U−1

= P1 coshλ+ P2 tan θ sinhλ, (47)

UP2U
−1 = P2 coshλ+ P1 cot θ sinhλ, (48)

so under the U transformation the two quadratures for
two-mode optical field become

U (X1 +X2)U−1 = X1 (coshλ− tan θ sinhλ)
+X2 (coshλ− cot θ sinhλ) , (49)

U (P1 + P2)U−1 = P1 (coshλ+ cot θ sinhλ)
+ P2 (coshλ+ tan θ sinhλ) . (50)
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exp [−2iθJy] e
1
2a†2

1 tanhλe−
1
2 a†2

2 tanh λ exp [2iθJy] exp [−2iθJy] |00〉

= exp
{

tanhλ
2

[(
a†1 cos θ + a†2 sin θ

)2

−
(
a†2 cos θ − a†1 sin θ

)2
]}

|00〉

= exp
{

tanhλ
2

cos 2θ(a†21 − a†22 ) + a†1a
†
2 tanhλ sin 2θ

}

|00〉 , (58)

Using (31) we know that U−1 = U † generates the
θ−related squeezed vacuum state,

U−1 |00〉 =
sin 2θ√
S

exp
{

cos 2θ
2S

sinh2 λ
(
a†21 − a†22

)

− sin 2θ
2S

a†1a
†
2 sinh 2λ

}

|00〉 ≡ | 〉λ,θ . (51)

The expectation value of the two quadratures in the state
| 〉λ,θ are

λ,θ 〈 | (X1 +X2) | 〉λ,θ = 0, λ,θ 〈 | (P1 + P2) | 〉λ,θ = 0,
(52)

thus the variance of the two quadratures are

λ,θ

〈
∆

(
X1+X2

)2
〉

λ,θ
=λ,θ 〈 | (X1 +X2)

2 | 〉λ,θ

= 〈00|U (X1 +X2)
2
U−1 |00〉

= cosh2 λ+
sinh2 λ

2
(
tan2 θ + cot2 θ

)

− sinh 2λ
2

(tan θ + cot θ) , (53)

λ,θ

〈
∆

(
P1+P2

)2
〉

λ,θ
=λ,θ 〈 | (P1 + P2)

2 | 〉λ,θ

= 〈00|U (P1 + P2)
2
U−1 |00〉

= cosh2 λ+
sinh2 λ

2
(
tan2 θ + cot2 θ

)

+
sinh 2λ

2
(tan θ + cot θ) . (54)

Especially, when θ = π/4, this θ−related squeezed vacuum
state reduces to the usual two-mode squeezed state, (54)
and (55) respectively become

λ,π/4

〈
∆ (X1 +X2)

2
〉

λ,π/4
= e−2λ,

λ,π/4 〈 | (P1 + P2)
2 | 〉λ,π/4 = e2λ, (55)

as expected. On the other hand, due to tan2 θ+cot2 θ � 2,
tan θ + cot θ � 2, from (55) we see

λ,θ

〈
∆ (P1 + P2)

2
〉

λ,θ
� (coshλ+ sinhλ)2 = e2λ, (56)

which means that the θ−related squeezed vacuum state
can exhibit more stronger squeezing in one quadrature
than that of the usual two-mode squeezed vacuum state.

Finally, since sin 2θ ≤ 1, cos2 2θ ≤ 1, when the squeezing
parameter µ = eλ is large enough such that cosh2 λ 

cos2 2θ, S = cosh2 λ − cos2 2θ ∼ cosh2 λ, then U |00〉 is
approximately equal to (up to a constant factor)

U |00〉 → exp
{

tanh2 λ

2
cos 2θ

(
a†21 − a†22

)

+ a†1a
†
2 tanhλ sin 2θ

}

|00〉 . (57)

Experimentally, this state can be approximately produced
when two light fields respectively squeezed in Xi and Pi

with the same squeezing parameter µ = eλ, expressed by
e

1
2a†2

1 tanh λ |0〉1 and e−
1
2a†2

2 tanhλ |0〉1 respectively, entering
the asymmetric beamsplitter’s two input ports and get
superimposed, then using (19) we know that the output
state is

see equation (58) above

which is approximately equal to (58) when tanh2 λ ∼
tanhλ.

In summary, as a non-trivial generalization of the fact
that a 50/50 beamsplitter can produce an EPR entan-
gled state, we see that two light fields maximally squeezed
in opposite quadratures, respectively entering two input
ports of a non-50/50 beamsplitter and get superimposed,
will produce at the output a pair of entangled light beams,
which can be ideally expressed by the new entangled state
|η, θ〉. Such states are potentially useful, because they
make up a complete and orthonormal representation in
two-mode Fock space as Dirac’s theory stated [17]. Us-
ing |η, θ〉 we have derived new squeezing operator and
squeezed state (52) which in some approximation can be
generated by an asymmetric beamsplitter. The foundation
of |η, θ〉 generalizes the EPR entangled state representa-
tion with continuous variables. For the 3-mode squeezed
state which relates to the corresponding entangled state
representation we refer to [18].

Appendix

Here we prove the operator identity

exp
[
a†iΛijaj

]
=: exp{a†i (Λ− 1)ij aj} :, (59)

which can lead to (37) from (36). The proof is as follows.
Using the completeness relation of the n−mode coherent
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state |z〉 = |z1, · · · , zn〉, i.e.
∫ ∏

i

[
d2zi

π

]

|z〉 〈z| = 1, (60)

and (38) as well as exp[−a†iΛijaj ] |0〉 = |0〉, by virtue of
the IWOP technique, we have

exp
[
a†iΛijaj

]
=

∫ ∏

i

[
d2zi

π

]

exp
[
a†iΛijaj

]
exp

(
a†izi

)

× exp
[
−a†iΛijaj

]
|0〉 〈z| exp

(

−1
2
|zi|2

)

=
∫ ∏

i

[
d2zi

π

]

exp
[
a†i

(
eΛ

)
il
zl

]
|0〉 〈z| exp

(

−1
2
|zi|2

)

=
∫ ∏

i

[
d2zi

π

]

: exp
[
−|zi|2+a†i

(
eΛ

)
il
zl +z∗i ai−a†iai

]
:

=: exp{a†i
(
eΛ − 1

)
ij
aj} : . (61)

One of the authors, Hong-yi Fan, considers that this work is
in memory of Prof. L. Mandel, one of the pioneers of quantum
optics, who friendly invited him to visit University of Rochester
in 1987 and discussed with him on squeezed states, entangled
states and the existence of creation operator’s eigenket.
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